login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351532
Number of integer pairs (i, j), 0 < i, j < n, such that i/(n - i) + j/(n - j) = 1.
3
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 5, 0, 0, 1, 2, 0, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 3, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 5, 0, 0, 1, 0, 2, 1, 0, 2, 1, 0, 0, 3, 0, 0, 1, 0, 0, 7, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 2, 3
OFFSET
1,18
COMMENTS
By symmetry, if (i, j) is a solution then so is (j, i). When j=i we get n = 3i, corresponding to the solution 1/2 + 1/2 = 1. Therefore, when 3|n, a(n) > 0 and odd, otherwise a(n) >= 0 and even.
For n < 10^6, the largest term is a(720720) = 285, and 483188 terms are 0.
Other record terms: a(1081080) = 369, a(2162160) = 457, a(3243240) = 481, a(4324320) = 533, a(5405400) = 559, a(6126120) = 597. Record terms with index >= 360360 appear to occur at indices that are multiples of 180180. - Chai Wah Wu, Feb 15 2022
LINKS
FORMULA
The original equation can be solved for j giving j = (n(n - 2i)) / (2n - 3i). Varying i from 1 to n-1, a(n) is given by the number of integer values of j, 0 < j < n.
EXAMPLE
For n = 3: (i, j) = (1, 1), so a(3) = 1. (1/2 + 1/2 = 1)
For n = 18: (i, j) = (3, 8), (6, 6), (8, 3), so a(18) = 3. (3/15 + 8/10 = 1/5 + 4/5 = 1)
For n = 20: (i, j) = (5, 8), (8, 5), so a(20) = 2.
For n = 36: (i, j) = (6, 16), (8, 15), (12, 12), (15, 8), (16, 6), so a(36) = 5.
PROG
(PARI)
a(n)={my(x=n^2, y=2*n); sum(i=1, (n-1)/2, x-=2*n; y-=3; if(x%y==0, 1, 0))}
(Python)
from sympy.abc import i, j
from sympy.solvers.diophantine.diophantine import diop_quadratic
def A351532(n):
return sum(1 for d in diop_quadratic(n**2+3*i*j-2*n*(i+j)) if 0 < d[0] < n and 0 < d[1] < n) # Chai Wah Wu, Feb 15 2022
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Lars Blomberg, Feb 14 2022
EXTENSIONS
Data section extended up to a(105) by Antti Karttunen, Jan 17 2025
STATUS
approved