login
A303400
Numbers that can be partitioned into squares of distinct integers >= 6, whose reciprocals sum to 1.
4
2579, 3633, 3735, 3868, 3948, 4237, 4469, 4544, 4588, 4663, 4678, 4789, 4840, 4913, 4928, 4959, 4995, 5024, 5094, 5104, 5180, 5344, 5393, 5584, 5625, 5642, 5689, 5704, 5717, 5744, 5790, 5799, 5804, 5808, 5856, 5865, 5877, 5900, 5909, 5921, 5923, 5938, 5952, 5953, 5957, 5967, 5984, 6013, 6032, 6034, 6040, 6049, 6114, 6130, 6148, 6150, 6196, 6200, 6234, 6246, 6248, 6272, 6284, 6287
OFFSET
1,1
COMMENTS
Also, 6-representable numbers (Alekseyev 2019).
All integers > 15707 = A297896(6) belong to this sequence.
LINKS
Max Alekseyev (2019). On partitions into squares of distinct integers whose reciprocals sum to 1. In: J. Beineke, J. Rosenhouse (eds.) The Mathematics of Various Entertaining Subjects: Research in Recreational Math, Volume 3, Princeton University Press, pp. 213-221. ISBN 978-0-691-18257-5 DOI:10.2307/j.ctvd58spj.18 Preprint arXiv:1801.05928 [math.NT], 2018.
FORMULA
For n >= 5484, a(n) = n + 10224.
EXAMPLE
2579 = 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 12^2 + 14^2 + 15^2 + 18^2 + 24^2 + 28^2, where 1/6 + 1/7 + 1/8 + 1/9 + 1/10 + 1/12 + 1/14 + 1/15 + 1/18 + 1/24 + 1/28 = 1.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Max Alekseyev, Apr 23 2018
STATUS
approved