login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303398
Expansion of Product_{k>=1} (1 - 3*x^k)/(1 + 3*x^k).
3
1, -6, 12, -24, 102, -312, 840, -2544, 7788, -23406, 69816, -208968, 628536, -1886712, 5654784, -16961856, 50900934, -152709936, 458084244, -1374231912, 4122828408, -12368549040, 37105252680, -111315549552, 333947845416, -1001844169854, 3005528872008
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * (-3)^n, where c = QPochhammer[-1, -1/3]/QPochhammer[-1/3] = 1.1824106844873309732830080836112464096086... - Vaclav Kotesovec, Apr 25 2018
MAPLE
N:= 100: # for a(0)..a(N)
G:= mul((1-3*x^k)/(1+3*x^k), k=1..N):
S:= series(G, x, N+1):
seq(coeff(S, x, n), n=0..N); # Robert Israel, Jul 31 2020
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[(1 - 3*x^k)/(1 + 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 25 2018 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-3*x^k)/(1+3*x^k)))
CROSSREFS
Expansion of Product_{k>=1} (1 - b*x^k)/(1 + b*x^k): A002448 (b=1), A303397 (b=2), this sequence (b=3), A303402 (b=4).
Cf. A303390.
Sequence in context: A300915 A001766 A110959 * A244743 A202805 A065106
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 23 2018
STATUS
approved