OFFSET
0,3
FORMULA
E.g.f. A(x) satisfies the differential equation 6*A(x) + (3*x + 1)*A'(x) - A''(x) = 0, A(0) = 1, A'(0) = 1.
E.g.f.: 1 + sqrt(Pi/6) * (1 + 3*x) * exp((1 + 3*x)^2/6) * (erf((1 + 3*x)/sqrt(6)) - erf(1/sqrt(6))).
a(n) ~ erfc(1/sqrt(6)) * sqrt(Pi) * 3^(n/2) * exp(sqrt(n/3) - n/2 + 1/12) * n^((n+1)/2) / 2 * (1 + 55/(72*sqrt(3*n)) + 7561/(31104*n)).
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==1, a[n]==a[n-1] + 3*n*a[n-2]}, a, {n, 0, 20}]
nmax = 20; FullSimplify[CoefficientList[Series[1 + Sqrt[Pi/6] * (1 + 3*x) * E^((1 + 3*x)^2/6) * (Erf[(1 + 3*x)/Sqrt[6]] - Erf[1/Sqrt[6]]), {x, 0, nmax}], x] * Range[0, nmax]!]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Feb 13 2022, following a suggestion from John M. Campbell
STATUS
approved