login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124452
Expansion of psi(-q) * psi(-q^2) * chi(q^3) * chi(q^6) in powers of q where psi(), chi() are Ramanujan theta functions.
1
1, -1, -1, 1, -1, 0, 1, 0, -1, 3, 0, -2, 1, 0, 0, 0, -1, -2, 3, -2, 0, 0, -2, 0, 1, -1, 0, 5, 0, 0, 0, 0, -1, 2, -2, 0, 3, 0, -2, 0, 0, -2, 0, -2, -2, 0, 0, 0, 1, -1, -1, 2, 0, 0, 5, 0, 0, 2, 0, -2, 0, 0, 0, 0, -1, 0, 2, -2, -2, 0, 0, 0, 3, -2, 0, 1, -2, 0, 0, 0, 0, 7, -2, -2, 0, 0, -2, 0, -2, -2, 0, 0, 0, 0, 0, 0, 1, -2, -1, 6, -1, 0, 2, 0, 0
OFFSET
0,10
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is in A002479.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q) * eta(q^6) * eta(q^8) * eta(q^12) / (eta(q^3) * eta(q^24)) in powers of q.
a(n) = -b(n) where b(n) is multiplicative with b(2^e) = 1, b(3^e) = 1 - 2*e, b(p^e) = 1+e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).
Euler transform of period 24 sequence [ -1, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, -1, -2, ...].
Moebius transform is period 24 sequence [ -1, 0, 2, 0, 1, 0, 1, 0, 2, 0, -1, 0, 1, 0, -2, 0, -1, 0, -1, 0, -2, 0, 1, 0, ...].
a(8*n + 5) = a(8*n + 7) = 0. a(2*n) = a(n). a(3*n) >= 0.
EXAMPLE
1 - q - q^2 + q^3 - q^4 + q^6 - q^8 + 3*q^9 - 2*q^11 + q^12 - q^16 - 2*q^17 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]* eta[q^6]*eta[q^8]*eta[q^12]/(eta[q^3]*eta[q^24]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Mar 08 2018 *)
PROG
(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( p==3, 1 - 2*e, if( p%8<4, e+1, !(e%2)))))))}
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^8 + A) * eta(x^12 + A) / (eta(x^3 + A) * eta(x^24 + A)), n))}
(PARI) q='q+O('q^99); Vec(eta(q)*eta(q^6)*eta(q^8)*eta(q^12)/(eta(q^3)*eta(q^24))) \\ Altug Alkan, Mar 09 2018
CROSSREFS
Cf. A002479.
Sequence in context: A073538 A022898 A072780 * A351532 A291786 A004603
KEYWORD
sign
AUTHOR
Michael Somos, Nov 02 2006
STATUS
approved