login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of psi(-q) * psi(-q^2) * chi(q^3) * chi(q^6) in powers of q where psi(), chi() are Ramanujan theta functions.
1

%I #16 Mar 12 2021 22:24:44

%S 1,-1,-1,1,-1,0,1,0,-1,3,0,-2,1,0,0,0,-1,-2,3,-2,0,0,-2,0,1,-1,0,5,0,

%T 0,0,0,-1,2,-2,0,3,0,-2,0,0,-2,0,-2,-2,0,0,0,1,-1,-1,2,0,0,5,0,0,2,0,

%U -2,0,0,0,0,-1,0,2,-2,-2,0,0,0,3,-2,0,1,-2,0,0,0,0,7,-2,-2,0,0,-2,0,-2,-2,0,0,0,0,0,0,1,-2,-1,6,-1,0,2,0,0

%N Expansion of psi(-q) * psi(-q^2) * chi(q^3) * chi(q^6) in powers of q where psi(), chi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C a(n) is nonzero if and only if n is in A002479.

%H G. C. Greubel, <a href="/A124452/b124452.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of eta(q) * eta(q^6) * eta(q^8) * eta(q^12) / (eta(q^3) * eta(q^24)) in powers of q.

%F a(n) = -b(n) where b(n) is multiplicative with b(2^e) = 1, b(3^e) = 1 - 2*e, b(p^e) = 1+e if p == 1, 3 (mod 8), b(p^e) = (1 + (-1)^e) / 2 if p == 5, 7 (mod 8).

%F Euler transform of period 24 sequence [ -1, -1, 0, -1, -1, -1, -1, -2, 0, -1, -1, -2, -1, -1, 0, -2, -1, -1, -1, -1, 0, -1, -1, -2, ...].

%F Moebius transform is period 24 sequence [ -1, 0, 2, 0, 1, 0, 1, 0, 2, 0, -1, 0, 1, 0, -2, 0, -1, 0, -1, 0, -2, 0, 1, 0, ...].

%F a(8*n + 5) = a(8*n + 7) = 0. a(2*n) = a(n). a(3*n) >= 0.

%e 1 - q - q^2 + q^3 - q^4 + q^6 - q^8 + 3*q^9 - 2*q^11 + q^12 - q^16 - 2*q^17 + ...

%t eta[q_]:= q^(1/24)*QPochhammer[q]; a[n_]:= SeriesCoefficient[eta[q]* eta[q^6]*eta[q^8]*eta[q^12]/(eta[q^3]*eta[q^24]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* _G. C. Greubel_, Mar 08 2018 *)

%o (PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); - prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( p==3, 1 - 2*e, if( p%8<4, e+1, !(e%2)))))))}

%o (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^8 + A) * eta(x^12 + A) / (eta(x^3 + A) * eta(x^24 + A)), n))}

%o (PARI) q='q+O('q^99); Vec(eta(q)*eta(q^6)*eta(q^8)*eta(q^12)/(eta(q^3)*eta(q^24))) \\ _Altug Alkan_, Mar 09 2018

%Y Cf. A002479.

%K sign

%O 0,10

%A _Michael Somos_, Nov 02 2006