login
A358162
a(n) is the hafnian of the 2n X 2n symmetric matrix defined by M[i,j] = ceiling(i*j/3).
1
1, 1, 11, 530, 71196, 18680148, 8825763888, 6969574132560, 8223753750015600, 14043461354695317600, 33726601900489760438400
OFFSET
0,3
COMMENTS
The matrix M(n) is the n-th principal submatrix of the rectangular array A143977.
EXAMPLE
a(2) = 11:
1 1 1 2
1 2 2 3
1 2 3 4
2 3 4 6
MATHEMATICA
M[i_, j_, n_]:=Part[Part[Table[Ceiling[r*c/3], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) tm(n) = matrix(n, n, i, j, ceil((i*j)/3));
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A143977.
Cf. A008810 (matrix element M[n,n]), A070333 (trace of M(n)), A358161 (permanent of M(n)).
Sequence in context: A322065 A065823 A233198 * A049654 A179897 A185203
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Nov 01 2022
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
STATUS
approved