login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362783
Square array A(n,k) = (n^(2*k + 1) + 1)/(n + 1), n >= 0, k >= 0, read by antidiagonals.
2
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 7, 1, 1, 1, 43, 61, 13, 1, 1, 1, 171, 547, 205, 21, 1, 1, 1, 683, 4921, 3277, 521, 31, 1, 1, 1, 2731, 44287, 52429, 13021, 1111, 43, 1, 1, 1, 10923, 398581, 838861, 325521, 39991, 2101, 57, 1, 1, 1, 43691, 3587227, 13421773, 8138021, 1439671
OFFSET
0,9
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
A(n,k) = Sum_{j=0..2*k} (-n)^j.
EXAMPLE
Array begins:
=====================================================================
n/k | 0 1 2 3 4 5 6 ...
----+----------------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 3 11 43 171 683 2731 ...
3 | 1 7 61 547 4921 44287 398581 ...
4 | 1 13 205 3277 52429 838861 13421773 ...
5 | 1 21 521 13021 325521 8138021 203450521 ...
6 | 1 31 1111 39991 1439671 51828151 1865813431 ...
...
PROG
(PARI) A(n, k) = (n^(2*k + 1) + 1)/(n + 1) \\ Andrew Howroyd, May 03 2023
(Magma) /* as array */ [[&+[(-n)^j: j in [0..2*k]]: k in [0..6]]: n in [0..6]]; // Juri-Stepan Gerasimov, May 06 2023
CROSSREFS
Columns k=0..3 are A000012, A002061, A060884, A060888.
Rows n=2..4 are A007583, A066443, A299960.
Main diagonal is A179897.
Sequence in context: A256692 A228637 A352431 * A152795 A338817 A121585
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
a(49) corrected by Andrew Howroyd, Jan 20 2024
STATUS
approved