login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352431
Number T(n,k) of tilings of a 2k X n rectangle using dominoes and 2 X 2 tiles.
4
1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 5, 1, 1, 1, 43, 29, 11, 1, 1, 1, 171, 173, 165, 21, 1, 1, 1, 683, 1037, 2773, 593, 43, 1, 1, 1, 2731, 6221, 48605, 17937, 2773, 85, 1, 1, 1, 10923, 37325, 864901, 550969, 205879, 11093, 171, 1
OFFSET
0,9
COMMENTS
Tiling algorithm, see A351322.
The table is read by descending antidiagonals.
If read by columns or rows:
T(n,1) = A001045(n+1);
T(3,k) = A083066(k);
T(n,2) = A352432(n);
T(5,k) = A352433(k).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..860 (first 41 antidiagonals).
Gerhard Kirchner, Maxima code
EXAMPLE
Table T(n,k) begins:
n\k 0 1 2 3 4
-----------------------------------
0: 1 1 1 1 1
1: 1 1 1 1 1
2: 1 3 11 43 171
3: 1 5 29 173 1037
4: 1 11 165 2773 48605
5: 1 21 593 17937 550969
6: 1 43 2773 205879 16231655
7: 1 85 11093 1615993 242436361
8: 1 171 48605 16231655 5811552169
PROG
(Maxima) See "Maxima code" link.
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gerhard Kirchner, Mar 17 2022
STATUS
approved