login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A352430
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} binomial(n,5*k+1) * a(n-5*k-1).
3
1, 1, 2, 6, 24, 120, 721, 5054, 40488, 364896, 3654000, 40249441, 483659508, 6296246424, 88269037584, 1325861901000, 21243052172161, 361630022931666, 6518319228715302, 124018898163736536, 2483799332459535000, 52231733840672804881, 1150683180739820615582, 26502219276887376327696
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1 / (1 - Sum_{k>=0} x^(5*k+1) / (5*k+1)!).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, 5 k + 1] a[n - 5 k - 1], {k, 0, Floor[(n - 1)/5]}]; Table[a[n], {n, 0, 23}]
nmax = 23; CoefficientList[Series[1/(1 - Sum[x^(5 k + 1)/(5 k + 1)!, {k, 0, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=0, N\5, x^(5*k+1)/(5*k+1)!)))) \\ Seiichi Manyama, Mar 23 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 16 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 02:41 EDT 2024. Contains 376016 sequences. (Running on oeis4.)