|
|
A352433
|
|
Number of tilings of a 5 X 2n rectangle using dominoes and 2 X 2 tiles.
|
|
5
|
|
|
1, 21, 593, 17937, 550969, 16982489, 523857737, 16162268361, 498665065833, 15385785653481, 474713270165161, 14646818304387753, 451913453451818281, 13943354204817352489, 430208763273959521833, 13273677023152591308329, 409546519819086706020393
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1 - 30*x + 286*x^2 - 1084*x^3 + 1728*x^4 - 960*x^5)/(1 - 51*x + 764*x^2 - 4822*x^3 + 13756*x^4 - 17328*x^5 + 7680*x^6).
a(n) = 51*a(n-1) - 764*a(n-2) + 4822*a(n-3) - 13756*a(n-4) + 17328*a(n-5) - 7680*a(n-6).
|
|
EXAMPLE
|
n=1: a(1)=21
The cells in the first row are covered by a horizontal domino, vertical dominoes or a square. The remaining rectangle has 11 (see example A352432) or 5 tilings.
___ ___ ___ 5 tilings of a 3 X 2 rectangle:
|___| | | | | | ___ ___ ___ ___ ___
| | |_|_| |___| | | |___| |___| | | | |___|
| | | | | | |___| | | |___| |_|_| |___|
| 11| | 5 | | 5 | |___| |___| |___| |___| |_|_|
|___| |___| |___|
|
|
MATHEMATICA
|
LinearRecurrence[{51, -764, 4822, -13756, 17328, -7680}, {1, 21, 593, 17937, 550969, 16982489}, 17] (* Hugo Pfoertner, Sep 30 2022 *)
|
|
PROG
|
(PARI) Vec((1-30*x+286*x^2-1084*x^3+1728*x^4-960*x^5)/(1-51*x+764*x^2-4822*x^3+13756*x^4-17328*x^5+7680*x^6)+O(x^99)) \\ Charles R Greathouse IV, Jul 05 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|