login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337714 Euler totient function phi(N) divided by the multiplicative order of 3 modulo N, with N = N(n) = floor((3*n-1)/2), for n >= 1. 1
1, 1, 1, 1, 1, 2, 1, 2, 4, 1, 2, 1, 1, 2, 2, 2, 1, 4, 2, 1, 1, 2, 1, 2, 2, 1, 4, 5, 1, 2, 2, 2, 1, 1, 4, 1, 2, 4, 1, 2, 6, 1, 2, 4, 3, 2, 2, 2, 6, 2, 2, 2, 1, 8, 5, 2, 4, 1, 4, 1, 12, 2, 2, 2, 2, 1, 2, 1, 3, 8, 1, 2, 4, 2, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
For the multiplicative order of 3 modulo N = N(n), with N(n) = floor((3*n-1)/2) = A001651(n), see A053446(n), for n >= 1.
For n >= 2 this sequence gives also the number of seeds s(N(n), i) needed to cover all numbers of the smallest positive restricted residue system (called RRS(N(n))) from the cycles obtained from s(N(n), i)*3^k (mod(N(n)), for k = 0..(P(N(n))-1), and certain s(N(n), i) chosen from RRS(N(n)). See A337936 for the choice of these seeds s(N, i). The cycles have period length P(N(n)) = A053446(n). For n = 1, N = 1, RRS(1) = [1] (not [0])
For the complete system of tripling sequences modulo N(n), for n >= 1, see A337936.
LINKS
FORMULA
Bisection: a(2*k+1) = phi(3*k+1)/A053446(2*k+1), a(2*k+2) = phi(3*k+2)/A053446(2*k+2), for k >= 0, where phi = A000010.
EXAMPLE
The pairs [N(n),a(n)] begin, for n >= 1:
[1, 1], [2, 1], [4, 1], [5, 1], [7, 1], [8, 2], [10, 1], [11, 2], [13, 4], [14, 1], [16, 2], [17, 1], [19, 1], [20, 2], [22, 2], [23, 2], [25, 1], [26, 4], [28, 2], [29, 1], [31, 1], [32, 2], [34, 1], [35, 2], [37, 2], [38, 1], [40, 4], [41, 5], [43, 1], [44, 2], ...
The pairs [N(n)= floor((3*n-1)/2), P(N(n)) = A053446(n)] begin, for n >= 1:
[1, 1], [2, 1], [4, 2], [5, 4], [7, 6], [8, 2], [10, 4], [11, 5], [13, 3], [14, 6], [16, 4], [17, 16], [19, 18], [20, 4], [22, 5], [23, 11], [25, 20], [26, 3], [28, 6], [29, 28], [31, 30], [32, 8], [34, 16], [35, 12], [37, 18], [38, 18], [40, 4], [41, 8], [43, 42], [44, 10], ...
MATHEMATICA
a[n_] := EulerPhi[(f = Floor[(3*n - 1)/2])] / MultiplicativeOrder[3, f]; Array[a, 100] (* Amiram Eldar, Oct 22 2020 *)
PROG
(PARI) a(n) = my(N=(3*n-1)\2); eulerphi(N)/znorder(Mod(3, N)); \\ Michel Marcus, Oct 22 2020
CROSSREFS
Sequence in context: A105246 A328027 A193829 * A198069 A300792 A132082
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Oct 22 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 1 16:12 EST 2024. Contains 370442 sequences. (Running on oeis4.)