The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198069 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=2^(n-1) T(n,k) = gcd(k,2^(n-1)). 5
 1, 1, 1, 2, 1, 2, 4, 1, 2, 1, 4, 8, 1, 2, 1, 4, 1, 2, 1, 8, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Reinhard Zumkeller, Rows n = 0..13 of triangle, flattened FORMULA For n > 0: Let S be the n-th row, S' = replace the initial term by its double, then row (n+1) = concatenation of S' and the reverse of S' without the initial term. - Reinhard Zumkeller, May 26 2013 EXAMPLE 1 1, 1 2, 1, 2 4, 1, 2, 1, 4 8, 1, 2, 1, 4, 1, 2, 1, 8 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16 MAPLE # In triangular form: seq(print(seq(gcd(k, 2^(n-1)), k=0..2^(n-1))), n=0..6); MATHEMATICA Join[{1}, Flatten[Table[GCD[k, 2^(n-1)], {n, 10}, {k, 0, 2^(n-1)}]]] (* Harvey P. Dale, Oct 30 2021 *) PROG (Haskell) a198069 n k = a198069_tabf !! n !! k a198069_row n = a198069_tabf !! n a198069_tabf = [0] : iterate f [1, 1] where f (x:xs) = ys ++ tail (reverse ys) where ys = (2 * x) : xs -- Reinhard Zumkeller, May 26 2013 CROSSREFS Cf. A094373 (row lengths), A045623 (row sums), A011782 (edges and central terms). Sequence in context: A328027 A193829 A337714 * A300792 A132082 A129644 Adjacent sequences: A198066 A198067 A198068 * A198070 A198071 A198072 KEYWORD nonn,tabf AUTHOR Peter Luschny, Nov 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 16:28 EDT 2024. Contains 371916 sequences. (Running on oeis4.)