login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337711
Decimal expansion of (7/120)*Pi^4 = (21/4)*zeta(4).
1
5, 6, 8, 2, 1, 9, 6, 9, 7, 6, 9, 8, 3, 4, 7, 5, 5, 0, 5, 4, 5, 9, 0, 1, 9, 4, 0, 6, 8, 4, 1, 1, 3, 1, 4, 8, 9, 5, 6, 7, 4, 4, 2, 4, 9, 7, 5, 7, 3, 3, 1, 6, 2, 6, 5, 3, 3, 5, 6, 2, 5, 1, 3, 1, 0, 8, 1, 6, 3, 3, 2, 3, 4, 9, 8, 1, 5, 8
OFFSET
1,1
COMMENTS
Equals Integral_{0..infinity} x^3/(exp(x) + 1) dx = (7/120)*Pi^4 = (21/4)*A013662. (Fermi-Dirac). See Abramowitz-Stegun, 23.2.8, for s=4, p. 807, and Landau-Lifschitz, eq. (1), for x=4, p. 172.
REFERENCES
L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, eq. (1) for x=4, p. 172.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
Equals -Integral_{x=0..1} log(x)^3/(x+1) dx. - Amiram Eldar, May 27 2021
EXAMPLE
5.68219697698347550545901940684113148956744249757331626533562...
MATHEMATICA
RealDigits[7*Pi^4/120, 10, 100][[1]] (* Amiram Eldar, May 27 2021 *)
CROSSREFS
Cf. A013662, A231535 (Planck, Bose-Einstein integral).
Sequence in context: A100379 A351885 A021180 * A345411 A275480 A091659
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Sep 16 2020
STATUS
approved