login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (7/120)*Pi^4 = (21/4)*zeta(4).
1

%I #14 Oct 01 2022 15:43:46

%S 5,6,8,2,1,9,6,9,7,6,9,8,3,4,7,5,5,0,5,4,5,9,0,1,9,4,0,6,8,4,1,1,3,1,

%T 4,8,9,5,6,7,4,4,2,4,9,7,5,7,3,3,1,6,2,6,5,3,3,5,6,2,5,1,3,1,0,8,1,6,

%U 3,3,2,3,4,9,8,1,5,8

%N Decimal expansion of (7/120)*Pi^4 = (21/4)*zeta(4).

%C Equals Integral_{0..infinity} x^3/(exp(x) + 1) dx = (7/120)*Pi^4 = (21/4)*A013662. (Fermi-Dirac). See Abramowitz-Stegun, 23.2.8, for s=4, p. 807, and Landau-Lifschitz, eq. (1), for x=4, p. 172.

%D L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, eq. (1) for x=4, p. 172.

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&amp;Page=807&amp;Submit=Go">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals -Integral_{x=0..1} log(x)^3/(x+1) dx. - _Amiram Eldar_, May 27 2021

%e 5.68219697698347550545901940684113148956744249757331626533562...

%t RealDigits[7*Pi^4/120, 10, 100][[1]] (* _Amiram Eldar_, May 27 2021 *)

%Y Cf. A013662, A231535 (Planck, Bose-Einstein integral).

%K nonn,cons

%O 1,1

%A _Wolfdieter Lang_, Sep 16 2020