login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275480
Decimal expansion of B, a constant appearing in an asymptotic formula related to the exponential divisor function sigma^(e).
3
5, 6, 8, 2, 8, 5, 4, 9, 3, 7, 4, 6, 8, 0, 6, 9, 5, 4, 3, 2, 6, 0, 3, 6, 5, 7, 6, 1, 9, 1, 9, 1, 6, 2, 9, 6, 7, 2, 4, 4, 0, 4, 5, 0, 9, 3, 1, 9, 7, 8, 6, 3, 8, 3, 9, 4, 5, 2, 6, 3, 2, 7, 2, 1, 5, 8, 1, 1, 9, 8, 6, 0, 1, 5, 7, 5, 7, 6, 4, 4, 1, 8, 4, 3, 8, 0, 6, 9, 6, 3, 6, 3, 7, 4, 4, 9, 2, 7, 6, 3, 1, 0, 9, 6, 1, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.11 Abundant numbers density constant p. 126.
LINKS
Eric Weisstein's World of Mathematics, e-Divisor
FORMULA
B = lim_{N->inf} (1/N^2) * Sum_{n=1..N} sigma^(e)(n), where sigma^(e)(n) is the sum of all exponential divisors of n.
B = (1/2) * Product_{p prime} (1 + 1/(p*(p^2 - 1)) - 1/(p^2 - 1) + (1 - 1/p)*Sum_{k>=2} p^k/(p^(2k)-1)).
EXAMPLE
0.5682854937...
MATHEMATICA
digits = 10; maxPi = 10^5;
B = (1/2)*Product[1 + 1/(p*(p^2-1)) - 1/(p^2-1) + (1-1/p)*((Log[-(1/p^2)] - Log[1/p^2] + QPolyGamma[0, -(Log[-(1/p^2)]/Log[p]), p] - QPolyGamma[0, -(Log[1/p^2]/Log[p]), p])/(2*Log[p])), {p, Prime[Range[maxPi]]}];
RealDigits[N[B] // Chop, 10, digits][[1]]
$MaxExtraPrecision = 2000; Do[m = 2000; Clear[f]; f[p_] := (1 + 1/(p*(p^2 - 1)) - 1/(p^2 - 1) + (1 - 1/p)*Sum[p^k/(p^(2 k) - 1), {k, 2, kmax}]); c = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, m}], x]]; Print[f[2]/2 * Exp[N[Sum[Indexed[c, n]*(PrimeZetaP[n] - 1/2^n), {n, 2, m}], 112]]], {kmax, 100, 1000, 100}] (* Vaclav Kotesovec, Jun 19 2020 *)
CROSSREFS
Cf. A072691 (value of the same limit sum with sigma(n) instead of sigma^(e)(n)).
Sequence in context: A021180 A337711 A345411 * A091659 A271571 A349577
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More digits from Robert G. Wilson v, Feb 25 2019
More digits from Vaclav Kotesovec, Jun 19 2020
STATUS
approved