login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275481
n appears once in c_{m,k} for integers m >= k >= 1 where c_{m,k} = ((n+k)!(n-k+1))/((k)!(n+1)!).
1
3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85
OFFSET
1,1
COMMENTS
Integers that appear uniquely in the Catalan triangle, A009766.
LINKS
D. F. Bailey, Counting arrangements of 1's and-1's, Mathematics Magazine, 69 (1996): 128-131.
Nathaniel Benjamin, Grant Fickes, Eugene Fiorini, Edgar Jaramillo Rodriguez, Eric Jovinelly, Tony W. H. Wong, Primes and Perfect Powers in the Catalan Triangle, J. Int. Seq., Vol. 22 (2019), Article 19.7.6.
Eric W. Weisstein, Catalan's Triangle
MATHEMATICA
Block[{T, nn = 85}, T[n_, k_] := T[n, k] = Which[k == 0, 1, k > n, 0, True, T[n - 1, k] + T[n, k - 1]]; Rest@ Complement[Range@ nn, Union@ Flatten@ Table[T[n, k], {n, 2, nn}, {k, 2, n}]]] (* Michael De Vlieger, Feb 04 2020, after Jean-François Alcover at A009766 *)
PROG
(Python)
#prints the unique integers less than k
def Unique_Catalan_Triangle(k):
t = []
t.append([])
t[0].append(1)
for h in range(1, k):
t.append([])
t[0].append(1)
for i in range(1, k):
for j in range(0, k):
if i>j:
t[i].append(0)
else:
t[i].append(t[i-1][j] + t[i][j-1])
l = []
for r in range(0, k):
for s in range(0, k):
l.append(t[r][s])
unique = []
for n in l:
if n <= k and l.count(n) == 1 :
unique.append(n)
print sorted(unique)
CROSSREFS
Subsequence of A007401, which is the complement of A000096.
Cf. A009766, A275586 (complement).
Sequence in context: A075747 A143344 A007401 * A234349 A042954 A361457
KEYWORD
easy,nonn
STATUS
approved