login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020136
Fermat pseudoprimes to base 4.
14
15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 2821, 3133, 3277, 3367, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5461, 5551, 6601, 6643, 7957, 8321, 8481, 8695, 8911, 9061, 9131
OFFSET
1,1
COMMENTS
If q and 2q-1 are odd primes, then n=q*(2q-1) is in the sequence. So for n>1, A005382(n)*(2*A005382(n)-1) form a subsequence (cf. A129521). - Farideh Firoozbakht, Sep 12 2006
Primes q and 2q-1 are a Cunningham chain of the second kind. - Walter Nissen, Sep 07 2009
Composite numbers n such that 4^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Chris Caldwell, Cunningham chain.
Eric Weisstein's World of Mathematics, Fermat Pseudoprime.
MATHEMATICA
Select[Range[9200], ! PrimeQ[ # ] && PowerMod[4, # - 1, # ] == 1 &] (* Farideh Firoozbakht, Sep 12 2006 *)
PROG
(PARI) isok(n) = (Mod(4, n)^(n-1)==1) && !isprime(n) && (n>1); \\ Michel Marcus, Apr 27 2018
CROSSREFS
Subsequence of A122781.
Contains A001567 (Fermat pseudoprimes to base 2) as a subsequence.
Sequence in context: A279740 A281189 A206383 * A176033 A067401 A206169
KEYWORD
nonn
STATUS
approved