OFFSET
1,1
COMMENTS
Bisection of A278981.
Conjecture: a(n) always exceeds 0.
If a(n) = 0 then it must be the case that there exists no more than one prime of the form (2n)^m + 1. Otherwise, the product of two such primes would satisfy the condition of A278981 in base 2n.
Records: 15, 85, 1111, 4119, 4369, 13315, 26533, 179503, 4663957, 16246817, 75927167, 120872069, 335192766, ..., .
a(76) > 2^27.
LINKS
Ely Golden and Robert G. Wilson v, Table of n, a(n) for n = 1..75
FORMULA
a(n) = A278981(2n).
EXAMPLE
MATHEMATICA
g[n_] := g[n] = Flatten[ Table[#[[1]], {#[[2]]}] & /@ FactorInteger@ n]; f = Compile[{{b, _Integer}}, Block[{c = b^2}, While[ PrimeQ@ c || DeleteCases[ Sort[ IntegerDigits[c, b]], 0] != DeleteCases[ Sort[ Flatten[ IntegerDigits[ g[c], b]]], 0], c++]; c]]; Table[ f[b], {b, 2, 80, 2}]
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Ely Golden and Robert G. Wilson v, Jan 16 2017
STATUS
approved