login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050405
Partial sums of A051879.
5
1, 15, 84, 308, 882, 2142, 4620, 9108, 16731, 29029, 48048, 76440, 117572, 175644, 255816, 364344, 508725, 697851, 942172, 1253868, 1647030, 2137850, 2744820, 3488940, 4393935, 5486481, 6796440, 8357104
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = binomial(n+5, 5)*(3*n + 2)/2.
G.f.: (1+8*x)/(1-x)^7.
E.g.f.: (240 +3360*x +6600*x^2 +4000*x^3 +950*x^4 +92*x^5 +3* x^6) *exp(x)/240. - G. C. Greubel, Oct 30 2019
MAPLE
seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019
MATHEMATICA
Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24, {n, 0, 40}]]] (* Harvey P. Dale, Aug 19 2012 *)
PROG
(PARI) vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019
(Magma) [Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019
(Sage) [binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019
(GAP) List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019
CROSSREFS
Cf. A051879.
Cf. A093644 ((9, 1) Pascal, column m=6).
Sequence in context: A252935 A247958 A108674 * A241220 A279740 A281189
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Dec 21 1999
EXTENSIONS
Corrected by T. D. Noe, Nov 09 2006
STATUS
approved