The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050405 Partial sums of A051879. 4
 1, 15, 84, 308, 882, 2142, 4620, 9108, 16731, 29029, 48048, 76440, 117572, 175644, 255816, 364344, 508725, 697851, 942172, 1253868, 1647030, 2137850, 2744820, 3488940, 4393935, 5486481, 6796440, 8357104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1). FORMULA a(n) = binomial(n+5, 5)*(3*n + 2)/2. G.f.: (1+8*x)/(1-x)^7. E.g.f.: (240 +3360*x +6600*x^2 +4000*x^3 +950*x^4 +92*x^5 +3* x^6) *exp(x)/240. - G. C. Greubel, Oct 30 2019 MAPLE seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019 MATHEMATICA Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24, {n, 0, 40}]]] (* Harvey P. Dale, Aug 19 2012 *) PROG (PARI) vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019 (MAGMA) [Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019 (Sage) [binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019 (GAP) List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019 CROSSREFS Cf. A051879. Cf. A093644 ((9, 1) Pascal, column m=6). Sequence in context: A252935 A247958 A108674 * A241220 A279740 A281189 Adjacent sequences:  A050402 A050403 A050404 * A050406 A050407 A050408 KEYWORD easy,nonn AUTHOR Barry E. Williams, Dec 21 1999 EXTENSIONS Corrected by T. D. Noe, Nov 09 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 10:33 EDT 2020. Contains 333239 sequences. (Running on oeis4.)