login
A252935
Number of n X 5 nonnegative integer arrays with upper left 0 and every value within 3 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down.
1
15, 83, 494, 3067, 17962, 86488, 320270, 917811, 2127013, 4211511, 7437417, 12070971, 18378413, 26625983, 37079921, 50006467, 65671861, 84342343, 106284153, 131763531, 161046717, 194399951, 232089473, 274381523, 321542341
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (133120/3)*n^3 - 760496*n^2 + (13526246/3)*n - 9199709 for n>8.
Conjectures from Colin Barker, Dec 07 2018: (Start)
G.f.: x*(15 + 23*x + 252*x^2 + 1529*x^3 + 8341*x^4 + 31149*x^5 + 70316*x^6 + 86878*x^7 + 49399*x^8 + 15733*x^9 + 2477*x^10 + 128*x^11) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>12.
(End)
EXAMPLE
Some solutions for n=4:
..0..1..2..2..3....0..0..1..1..1....0..1..1..2..2....0..1..1..1..1
..1..1..2..2..3....0..1..1..1..1....0..1..2..2..3....0..1..1..1..2
..1..1..2..3..3....0..1..2..2..2....1..1..2..3..3....0..1..1..1..2
..1..1..2..3..4....1..1..2..3..3....1..2..2..3..4....0..1..2..2..2
CROSSREFS
Column 5 of A252938.
Sequence in context: A065103 A279395 A270768 * A247958 A108674 A050405
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 24 2014
STATUS
approved