login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A020138
Pseudoprimes to base 9.
9
4, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949, 1036, 1105, 1288, 1387, 1541, 1729, 1891, 2465, 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A122786. In fact the terms are composite terms n of A122786 such that gcd(n,3)=1. Theorem: If both numbers q & 2q-1 are primes greater than 3 and n=q*(2q-1) then 9^(n-1)==1 (mod n) (n is in the sequence). So for n>2 A005382(n)* (2*A005382(n)-1) is in the sequence; 91,703,1891,2701,12403,18721,... is the related subsequence. - Farideh Firoozbakht, Sep 15 2006
Composite numbers n such that 9^(n-1) == 1 (mod n).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..159 from R. J. Mathar, terms 160..1000 from T. D. Noe)
MATHEMATICA
Select[Range[8500], ! PrimeQ[ # ] && PowerMod[9, (# - 1), # ] == 1 &] (* Farideh Firoozbakht, Sep 15 2006 *)
CROSSREFS
Cf. A001567 (pseudoprimes to base 2), A005382, A122786.
Sequence in context: A104042 A338429 A117864 * A306448 A090083 A034515
KEYWORD
nonn
STATUS
approved