-7 1567 2997

THE UNIVERSITY OF ARIZONA

TUCSON, ARIZONA 85721

COLLEGE OF LIBERAL ARTS
DEPARTMENT OF MATHEMATICS

AREA CODE 602 884-2114

January 28, 1972

Neil Sloane, 2C-363 Bell Telephone Laboratories Murray Hill, N.J. 07974

Dear Neil,

I was happy to hear from you again and can give you a little information about the two questions you propose.

(1) Carmichael Numbers are composite a's such that $n \mid (a^n-a)$ for every integer a for which (a,n)=1. They are discussed in Ore's book on number theory, p. 331. The person who knows how the sequence proceeds is Professor So Swift at UCLA. I suggest you write him (I have his list, but I can't find it now, since I'm moving. -- I probably couldn't find it in any case, without raising a lot of dust). There is also Dickson's history, v. 1, pp. 91-95 which has the older information.

(2) As to the second question, I believe Professor David Singmaster might know something about it. His address is: Poly of the South Bank Borough Rd.

London (SE1), England.

With best regards.

Sincerely,

Ahn Brillhart

JB:gc

January 24, 1972

Prof. John D. Brillhart University of Arizona Tucson, Arizona 85721

Dear John:

Do you happen to know anything about the following sequences (found in Sierpiński, A Selection of Problems in the Theory of Numbers)?

- (1) Absolute Pseudo-primes, or Carmichael Numbers #2997 (pp. 51-52, 109): Composite numbers n which divide a^n a #2997 for every integer a. He gives the examples 561 = 3.11.17, 5.29.73.7.13.31.7.23.31.7.31.73.13.37.61, 5.17.29.113.337.673.2689. If c_1 is the ith such number, he says $c_1 = 561$. How does the sequence continue?
- (2) Numbers n such that $\sigma(n) = \sigma(n+1)$ (page 110) where $\sigma(n)$ is the sum of the divisors of n. He gives the examples 14,206,957,1334,1364,1634,2685,2974,4364. Are any more terms known?

Any comments will be most welcome.

Best regards,

MH-1216-NJAS-1s

N. J. A. Sloane

February 7, 1972

Professor J. D. Swift Department of Mathematics University of California in Los Angeles Los Angeles, Galifornia 90024

Dear Professor Swift:

John Brillhart suggested that I write to you about this. Carmichael numbers are composite a's such that n divides an - a for every integer a for which (a,n) = 1. Let c, be the ith Carmichael number. According to Sierpinski, c1 = 561. I would be very grateful if you could tell me how the sequence proceeds (or supply a reference if it has appeared in the literature). Any information at all would be most welcome.

Thank you.

Yours sincerely,

MH-1216-NJAS-bk

N. J. A. Sloane

UNIVERSITY OF CALIFORNIA, LOS ANGELES

BERKELEY · DAVIS · IRVINE · LOS ANGELES · RIVERSIDE · SAN DIEGO · SAN FRANCISCO

SANTA BARBARA • SANTA CRUZ

DEPARTMENT OF MATHEMATICS
LOS ANGELES, CALIFORNIA 90024

February 9, 1972

Dr. N. J. A. Sloane
Bell Laboratories
680 Mountain Avenue
Murray Hill, New Jersey 07974

Dear Dr. Sloane:

The standard table of Carmichael numbers consists of the starred elements in P. Poulet, "Table des nombers composés vérifiant le théorème de Fermat pour le module 2 jusqu' à 100.000.000", Sphinx, v. 8, 1938, pp 42-52.

An <u>almost</u> complete errata to Poulet appears in Math. Comp. v. 25, 1971, p 944. It may be completed by starring 99036001.

I have an (unpublished) list of Carmichael numbers to 10^9 .

For your immediate information, c₂,...,c₁, are 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041.

Yours very truly,

JDS:dg