Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 24 2018 12:32:56
%S 1,1,2,4,11,35,123,462,1829,7558,32380,143102,649999,3026171,14411412,
%T 70095713,347817785,1759198500,9063638685,47545501777,253854457415,
%U 1379172691108,7623064091313,42860238300826,245098499411379,1425403070154478,8429327482836740,50681175605982771
%N G.f. satisfies: A(x) = Sum_{n>=0} x^n*(1 + x*A(x)^n)^n.
%C Compare g.f. to a g.f. C(x) of the Catalan sequence:
%C C(x) = Sum_{n>=0} x^n*(1 + x*C(x)^2)^n where C(x) = 1 + x*C(x)^2.
%H Paul D. Hanna, <a href="/A186998/b186998.txt">Table of n, a(n) for n = 0..300</a>
%F G.f. satisfies: A(x) = Sum_{n>=0} x^(2*n) * A(x)^(n^2) / (1 - x*A(x)^n)^(n+1). - _Paul D. Hanna_, Sep 24 2014
%e G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 35*x^5 + 123*x^6 +...
%e such that
%e A(x) = 1 + x*(1+x*A(x)) + x^2*(1+x*A(x)^2)^2 + x^3*(1+x*A(x)^3)^3 + x^4*(1+x*A(x)^4)^4 + x^5*(1+x*A(x)^5)^5 + x^6*(1+x*A(x)^6)^6 +...
%e The g.f. satisfies the series identity:
%e A(x) = 1/(1-x) + x^2*A(x)/(1-x*A(x))^2 + x^4*A(x)^4/(1-x*A(x)^2)^3 + x^6*A(x)^9/(1-x*A(x)^3)^4 + x^8*A(x)^16/(1-x*A(x)^4)^5 + x^10*A(x)^25/(1-x*A(x)^5)^6 +...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(1+x*(A+x*O(x^n))^m)^m));polcoeff(A,n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n,x^(2*k)*A^(k^2)/(1 - x*A^k +x*O(x^n))^(k+1) )); polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", ")) \\ _Paul D. Hanna_, Sep 24 2014
%Y Cf. A186999, A203000, A247330, A186999.
%Y Cf. A300041, A300042, A300043.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Mar 01 2011