login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300041
G.f. satisfies: A(x) = Sum_{n>=0} x^n * (1 + x*A(x)^(n-1))^n.
4
1, 1, 2, 3, 7, 20, 63, 215, 783, 2998, 11977, 49656, 212738, 938836, 4257792, 19808597, 94405713, 460412410, 2295740045, 11695447378, 60837384509, 322968172763, 1748975296265, 9657311996480, 54350006350292, 311630231535041, 1819713622889812, 10817233370816701, 65434087495967354, 402615569685977397, 2518832660928798529, 16016013141937173805
OFFSET
0,3
COMMENTS
Compare g.f. to a g.f. C(x) of the Catalan sequence:
C(x) = Sum_{n>=0} x^n*(1 + x*C(x)^2)^n where C(x) = 1 + x*C(x)^2.
LINKS
FORMULA
G.f. satisfies:
(1) A(x) = Sum_{n>=0} x^n * (1 + x*A(x)^(n-1))^n.
(2) A(x) = Sum_{n>=0} x^(2*n) * A(x)^(n*(n-1)) / (1 - x*A(x)^n)^(n+1).
(3) A(x) = x/Series_Reversion( x*G(x) ), where G(x) = A(x*G(x)) is the g.f. of A300043.
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 7*x^4 + 20*x^5 + 63*x^6 + 215*x^7 + 783*x^8 + 2998*x^9 + 11977*x^10 + 49656*x^11 + 212738*x^12 + ...
such that
A(x) = 1 + x*(1+x) + x^2*(1+x*A(x))^2 + x^3*(1+x*A(x)^2)^3 + x^4*(1+x*A(x)^3)^4 + x^5*(1+x*A(x)^4)^5 + x^6*(1+x*A(x)^5)^6 + ...
The g.f. also satisfies the series identity:
A(x) = 1/(1-x) + x^2/(1-x*A(x))^2 + x^4*A(x)^2/(1-x*A(x)^2)^3 + x^6*A(x)^6/(1-x*A(x)^3)^4 + x^8*A(x)^12/(1-x*A(x)^4)^5 + x^10*A(x)^20/(1-x*A(x)^5)^6 + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*(1+x*(A+x*O(x^n))^(m-1))^m)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, x^(2*k)*A^(k*(k-1))/(1 - x*A^k +x*O(x^n))^(k+1) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 24 2018
STATUS
approved