login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300040
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
5
0, 1, 1, 1, 4, 1, 2, 17, 17, 2, 3, 61, 113, 61, 3, 5, 216, 628, 628, 216, 5, 8, 793, 3669, 5663, 3669, 793, 8, 13, 2907, 21792, 51862, 51862, 21792, 2907, 13, 21, 10622, 128610, 486305, 766231, 486305, 128610, 10622, 21, 34, 38809, 758715, 4532025, 11576060
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1.........2...........3.............5...............8
..1.....4......17........61.........216...........793............2907
..1....17.....113.......628........3669.........21792..........128610
..2....61.....628......5663.......51862........486305.........4532025
..3...216....3669.....51862......766231......11576060.......173419447
..5...793...21792....486305....11576060.....281861630......6789384478
..8..2907..128610...4532025...173419447....6789384478....262361247480
.13.10622..758715..42210111..2597671575..163627792463..10149632583491
.21.38809.4478515.393354513.38941599079.3947880819311.393165011518395
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
k=3: [order 14] for n>16
k=4: [order 49] for n>51
EXAMPLE
Some solutions for n=5 k=4
..0..1..0..1. .0..1..1..0. .0..1..0..1. .0..0..0..1. .0..0..0..0
..1..0..1..0. .1..0..1..0. .1..0..1..1. .1..0..1..0. .0..1..0..1
..1..1..1..0. .0..1..0..0. .1..0..0..1. .1..0..1..0. .0..1..0..1
..0..0..0..1. .1..0..1..1. .1..1..1..0. .1..0..1..1. .0..1..0..1
..1..1..0..0. .0..0..1..1. .1..0..0..1. .0..1..0..1. .1..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297917.
Column 3 is A299223.
Column 4 is A299224.
Sequence in context: A298337 A299398 A299228 * A206359 A297951 A298560
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 23 2018
STATUS
approved