login
A299228
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 4, 6 or 7 king-move adjacent elements, with upper left element zero.
7
0, 1, 1, 1, 4, 1, 2, 17, 17, 2, 3, 61, 113, 61, 3, 5, 216, 628, 628, 216, 5, 8, 793, 3669, 5663, 3669, 793, 8, 13, 2907, 21792, 51862, 51862, 21792, 2907, 13, 21, 10622, 128610, 486305, 766094, 486305, 128610, 10622, 21, 34, 38809, 758715, 4532025, 11568483
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1.........2...........3.............5...............8
..1.....4......17........61.........216...........793............2907
..1....17.....113.......628........3669.........21792..........128610
..2....61.....628......5663.......51862........486305.........4532025
..3...216....3669.....51862......766094......11568483.......173234478
..5...793...21792....486305....11568483.....281251424......6766315496
..8..2907..128610...4532025...173234478....6766315496....260938102438
.13.10622..758715..42210111..2594065569..162902164724..10077166692402
.21.38809.4478515.393354513.38873368814.3925885203249.389637415718865
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
k=3: [order 14] for n>16
k=4: [order 49] for n>51
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..0. .0..1..0..0. .0..0..0..0. .0..1..1..1. .0..0..0..0
..0..0..0..0. .0..1..1..1. .1..1..1..0. .0..0..0..1. .1..1..1..0
..0..0..0..0. .0..1..1..1. .0..1..1..1. .0..0..0..1. .0..1..1..1
..1..0..1..0. .0..1..0..1. .0..1..1..1. .0..1..0..1. .0..1..1..1
..1..1..0..1. .1..0..0..1. .1..0..0..1. .0..1..1..0. .0..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297917.
Sequence in context: A298547 A298337 A299398 * A300040 A206359 A297951
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 05 2018
STATUS
approved