login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297951
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 5 king-move adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 4, 1, 2, 18, 18, 2, 3, 52, 56, 52, 3, 5, 174, 219, 219, 174, 5, 8, 604, 796, 948, 796, 604, 8, 13, 2048, 3079, 4258, 4258, 3079, 2048, 13, 21, 6948, 11614, 19561, 23840, 19561, 11614, 6948, 21, 34, 23652, 44076, 88441, 134642, 134642, 88441, 44076
OFFSET
1,5
COMMENTS
Table starts
..0.....1......1.......2........3.........5..........8..........13...........21
..1.....4.....18......52......174.......604.......2048........6948........23652
..1....18.....56.....219......796......3079......11614.......44076.......167210
..2....52....219.....948.....4258.....19561......88441......402245......1831311
..3...174....796....4258....23840....134642.....750733.....4222383.....23711537
..5...604...3079...19561...134642....938557....6423236....44289957....305715877
..8..2048..11614...88441...750733...6423236...53630550...451993176...3822668362
.13..6948..44076..402245..4222383..44289957..451993176..4667940027..48407285130
.21.23652.167210.1831311.23711537.305715877.3822668362.48407285130.616122541550
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +2*a(n-3) -6*a(n-4) -4*a(n-5) for n>6
k=3: [order 20] for n>21
k=4: [order 66] for n>69
EXAMPLE
Some solutions for n=5 k=4
..0..0..0..1. .0..1..0..0. .0..1..1..1. .0..0..0..1. .0..1..0..0
..0..1..1..1. .0..1..1..1. .0..1..0..0. .1..0..1..1. .1..0..1..1
..1..1..0..1. .1..1..1..0. .0..1..0..1. .0..1..0..0. .1..1..0..0
..0..0..0..1. .0..0..1..0. .0..1..0..1. .0..1..0..1. .1..0..1..1
..1..1..1..0. .1..1..1..1. .0..1..0..1. .0..1..0..1. .1..0..0..0
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A299228 A300040 A206359 * A298560 A298389 A299307
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 09 2018
STATUS
approved