login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187001
G.f. satisfies: A(x) = Sum_{n>=0} x^n*[Sum_{k=0..n} C(n,k)^3 *x^k* A(x)^(3k)].
1
1, 1, 2, 12, 62, 300, 1635, 9413, 54505, 321655, 1938621, 11834305, 72975115, 454385175, 2852742151, 18034439209, 114709370133, 733605250447, 4714351916849, 30426720332601, 197141722168571, 1281835943761551
OFFSET
0,3
FORMULA
G.f. satisfies:
(1) A(x) = Sum_{n>=0} x^(2n)*A(x)^(3n)*[Sum_{k>=0} C(n+k,k)^3*x^k].
(2) A(x) = Sum_{n>=0} (3n)!/n!^3 * (x*A(x))^(3n)/(1-x-x^2*A(x)^3)^(3n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 62*x^4 + 300*x^5 + 1635*x^6 +...
where g.f. A(x) satisfies:
* A(x) = 1 + x*(1 + x*A(x)^3) + x^2*(1 + 8*x*A(x)^3 + x^2*A(x)^6) + x^3*(1 + 27*x*A(x)^3 + 27*x^2*A(x)^6 + x^3*A(x)^9) + x^4*(1 + 64*x*A(x)^3 + 216*x^2*A(x)^6 + 64*x^3*A(x)^9 + x^4*A(x)^12) +...;
* A(x) = 1/(1-x-x^2*A(x)^3) + 6*x^3*A(x)^3/(1-x-x^2*A(x)^3)^4 + 90*x^6*A(x)^6/(1-x-x^2*A(x)^3)^7 + 1680*x^9*A(x)^9/(1-x-x^2*A(x)^3)^10 + 34650*x^12*A(x)^12/(1-x-x^2*A(x)^3)^13 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*sum(k=0, m, binomial(m, k)^3*x^k*(A+x*O(x^n))^(3*k)))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\2, x^(2*m)*(A+x*O(x^n))^(3*m)*sum(k=0, n, binomial(m+k, k)^3*x^k))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n\3, (3*m)!/m!^3*x^(3*m)*A^(3*m)/(1-x-x^2*A^3+x*O(x^n))^(3*m+1))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A037562 A321277 A377464 * A121177 A125831 A289787
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 01 2011
STATUS
approved