login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245465
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * (1/(1-x)^k - 1)^k.
2
1, 1, 2, 4, 11, 35, 128, 523, 2329, 11206, 57685, 315515, 1824216, 11097706, 70771858, 471589169, 3274334755, 23630689143, 176882416706, 1370600471230, 10975020795140, 90675899684369, 771893276793888, 6761498234340104, 60874834962590159, 562694002401250455
OFFSET
0,3
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} C(n,k) * (1 - 1/(1-x)^k)^(n-k) / (1-x)^(k^2).
G.f.: Sum_{n>=0} x^n * (1-x)^n / ((1-x)^(n+1) + x)^(n+1). - Paul D. Hanna, Jan 20 2015
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 11*x^4 + 35*x^5 + 128*x^6 + 523*x^7 +...
where we have the identity:
A(x) = 1 + x*(1 + (1/(1-x)-1))
+ x^2*(1 + 2*(1/(1-x)-1) + (1/(1-x)^2-1)^2)
+ x^3*(1 + 3*(1/(1-x)-1) + 3*(1/(1-x)^2-1)^2 + (1/(1-x)^3-1)^3)
+ x^4*(1 + 4*(1/(1-x)-1) + 6*(1/(1-x)^2-1)^2 + 4*(1/(1-x)^3-1)^3 + (1/(1-x)^4-1)^4)
+ x^5*(1 + 5*(1/(1-x)-1) + 10*(1/(1-x)^2-1)^2 + 10*(1/(1-x)^3-1)^3 + 5*(1/(1-x)^4-1)^4 + (1/(1-x)^5-1)^5) +...
is equal to
A(x) = 1 + x*(0 + 1/(1-x))
+ x^2*(0 + 2*(1-1/(1-x))*1/(1-x) + 1/(1-x)^4)
+ x^3*(0 + 3*(1-1/(1-x))^2*1/(1-x) + 3*(1-1/(1-x)^2)*1/(1-x)^4 + 1/(1-x)^9)
+ x^4*(0 + 4*(1-1/(1-x))^3*1/(1-x) + 6*(1-1/(1-x)^2)^2*1/(1-x)^4 + 4*(1-1/(1-x)^3)*1/(1-x)^9 + 1/(1-x)^16)
+ x^5*(0 + 5*(1-1/(1-x))^4*1/(1-x) + 6*(1-1/(1-x)^2)^3*1/(1-x)^4 + 4*(1-1/(1-x)^3)^2*1/(1-x)^9 + 5*(1-1/(1-x)^4)*1/(1-x)^16 + 1/(1-x)^25) +...
Also,
A(x) = 1 + x*(1-x)/((1-x)^2 + x)^2 + x^2*(1-x)^2/((1-x)^3 + x)^3 + x^3*(1-x)^3/((1-x)^4 + x)^4 + x^4*(1-x)^4/((1-x)^5 + x)^5 + x^5*(1-x)^5/((1-x)^6 + x)^6 + x^6*(1-x)^6/((1-x)^7 + x)^7 +...
PROG
(PARI) {a(n) = polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k) * (1/(1-x)^k - 1 +x*O(x^n))^k )) , n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = polcoeff(sum(m=0, n, x^m*sum(k=0, m, binomial(m, k) * (1 - 1/(1-x)^k +x*O(x^n))^(m-k) * 1/(1-x+x*O(x^n))^(k^2) )) , n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1); A=sum(m=0, n, x^m * (1-x)^m / ((1-x)^(m+1) + x +x*O(x^n))^(m+1) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A245464.
Sequence in context: A107378 A186998 A243788 * A219861 A193058 A179379
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 23 2014
STATUS
approved