login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A245462 a(1)=1, then a(n) is the smallest odd k > floor(a(n-1)/2)+1 such that k*2^n+1 is prime. 1
1, 3, 5, 7, 11, 7, 5, 13, 15, 13, 9, 15, 23, 39, 35, 21, 21, 33, 27, 25, 33, 25, 45, 45, 33, 27, 15, 13, 23, 49, 35, 43, 99, 75, 59, 81, 63, 63, 81, 57, 99, 73, 51, 27, 35, 19, 27, 15, 23, 27, 17, 25, 51, 49, 35, 27, 29, 99, 71, 45 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A134855(n) = smallest odd k such that k*2^n+1 is prime, the primes are not always in increasing order.

Here the primes k*2^n+1 are always in increasing order.

The ratio sum{k for n=1 to N}/sum{n for n=1 to N} is ~ 2*log(2) as N increases.

LINKS

Pierre CAMI, Table of n, a(n) for n = 1..6000

MATHEMATICA

a[n_] := Block[{k = Floor[ a[n - 1]/2] + 2}, If[ EvenQ[k], k++]; While[ !PrimeQ[k*2^n + 1], k += 2]; k]; a[1] = 1; Array[a, 60] (* Robert G. Wilson v, Jul 26 2014 *)

PROG

(PFGW & SCRIPT)

SCRIPT

DIM j, -1

DIM n, 0

DIMS t

OPENFILEOUT myf, a(n).txt

LABEL loop1

SET n, n+1

IF n>6000 THEN END

LABEL loop2

SET j, j+2

SETS t, %d, %d\,; n; j

PRP j*2^n+1, t

IF ISPRP THEN GOTO a

GOTO loop2

LABEL a

WRITE myf, t

SET j, j/2

IF j%2==0 THEN SET j, j+1

GOTO loop1

(PARI) a=[1]; for(n=2, 100, k=floor(a[n-1]/2)+2; if(k%2==0, k++); t=2^n; while(!isprime(k*t+1), k+=2); a=concat(a, k)); a \\ Colin Barker, Jul 23 2014

CROSSREFS

Cf. A134855, A245441.

Sequence in context: A335301 A235379 A174839 * A338842 A022457 A066066

Adjacent sequences:  A245459 A245460 A245461 * A245463 A245464 A245465

KEYWORD

nonn

AUTHOR

Pierre CAMI, Jul 22 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 12:59 EDT 2022. Contains 356932 sequences. (Running on oeis4.)