The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A245462 a(1)=1, then a(n) is the smallest odd k > floor(a(n-1)/2)+1 such that k*2^n+1 is prime. 1
 1, 3, 5, 7, 11, 7, 5, 13, 15, 13, 9, 15, 23, 39, 35, 21, 21, 33, 27, 25, 33, 25, 45, 45, 33, 27, 15, 13, 23, 49, 35, 43, 99, 75, 59, 81, 63, 63, 81, 57, 99, 73, 51, 27, 35, 19, 27, 15, 23, 27, 17, 25, 51, 49, 35, 27, 29, 99, 71, 45 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A134855(n) = smallest odd k such that k*2^n+1 is prime, the primes are not always in increasing order. Here the primes k*2^n+1 are always in increasing order. The ratio sum{k for n=1 to N}/sum{n for n=1 to N} is ~ 2*log(2) as N increases. LINKS Pierre CAMI, Table of n, a(n) for n = 1..6000 MATHEMATICA a[n_] := Block[{k = Floor[ a[n - 1]/2] + 2}, If[ EvenQ[k], k++]; While[ !PrimeQ[k*2^n + 1], k += 2]; k]; a = 1; Array[a, 60] (* Robert G. Wilson v, Jul 26 2014 *) PROG (PFGW & SCRIPT) SCRIPT DIM j, -1 DIM n, 0 DIMS t OPENFILEOUT myf, a(n).txt LABEL loop1 SET n, n+1 IF n>6000 THEN END LABEL loop2 SET j, j+2 SETS t, %d, %d\,; n; j PRP j*2^n+1, t IF ISPRP THEN GOTO a GOTO loop2 LABEL a WRITE myf, t SET j, j/2 IF j%2==0 THEN SET j, j+1 GOTO loop1 (PARI) a=; for(n=2, 100, k=floor(a[n-1]/2)+2; if(k%2==0, k++); t=2^n; while(!isprime(k*t+1), k+=2); a=concat(a, k)); a \\ Colin Barker, Jul 23 2014 CROSSREFS Cf. A134855, A245441. Sequence in context: A335301 A235379 A174839 * A338842 A022457 A066066 Adjacent sequences:  A245459 A245460 A245461 * A245463 A245464 A245465 KEYWORD nonn AUTHOR Pierre CAMI, Jul 22 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 12:59 EDT 2022. Contains 356932 sequences. (Running on oeis4.)