Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #83 Nov 22 2024 09:22:49
%S 1,1,4,19,104,614,3816,24595,162896,1101922,7580904,52878654,
%T 373100272,2658188524,19096607120,138182654595,1006202473888,
%U 7367648586954,54214472633064,400698865376842,2973344993337520,22142778865313364
%N G.f. satisfies: A(x) = 1 + x*A(x)^3 + x^2*A(x)^4.
%C a(n-1) is the number of rows with the value false in the truth tables of all bracketed implications with n distinct variables. - _Volkan Yildiz_, Jul 01 2011
%C From _Peter Bala_, Aug 02 2016: (Start)
%C Conjectures (both checked up to n = 100):
%C 2-adic valuation of a(2*n+1) = 2-adic valuation of Catalan(2*n+1) (= 2-adic valuation of Catalan(n));
%C 2-adic valuation of a(2*n) = 3 + 2-adic valuation of Catalan(n-2) for n >= 2, where Catalan(n) = A000108(n). (End)
%C a(n) is the number of Dyck paths of semi-length n using only steps U_1 = (4,2), U_2 = (9,3) and D = (1,-1). - _Michael D. Weiner_, Jun 12 2017
%H Vincenzo Librandi, <a href="/A186997/b186997.txt">Table of n, a(n) for n = 0..100</a>
%H Daniel Birmajer, Juan B. Gil, Peter R. W. McNamara and Michael D. Weiner, <a href="https://arxiv.org/abs/1602.03550">Enumeration of colored Dyck paths via partial Bell polynomials</a>, arXiv:1602.03550 [math.CO], 2016.
%H P. J. Cameron and V. Yildiz, <a href="http://www.maths.qmul.ac.uk/~pjc/preprints/asim2.pdf">Counting false entries in truth tables of bracketed formulas connected by implication</a>. Also arXiv:<a href="https://arxiv.org/abs/1106.4443">1106.4443</a> [math.CO], 2011.
%H Volkan Yildiz, <a href="https://arxiv.org/abs/1205.5595">General combinatorical structure of truth tables of bracketed formulas connected by implication</a>, arXiv preprint arXiv:1205.5595 [math.CO], 2012.
%H Volkan Yildiz, <a href="https://arxiv.org/abs/2106.04728">Notes on algebraic structure of truth tables of bracketed formulae connected by implications</a>, arXiv:2106.04728 [math.CO], 2021. See S(x) p. 3.
%F G.f.: A(x) = (1/x)*Series_Reversion(x*(1+sqrt(1-4*x-4*x^2))/2).
%F a(n) = Sum_{k=0..n} binomial(k,n-k)*binomial(n+2*k,n+k)/(n+k+1). - _Vladimir Kruchinin_, May 12 2011
%F From _Volkan Yildiz_, Jul 03 2011: (Start)
%F Let f(n) = Sum_{i=1..n-1} (2^i*C(i-1)-f(i))*f(n-i), with f(0)=0, f(1)=1, and where C are the Catalan numbers A000108. Then a(n)=f(n+1).
%F G.f.: (1/x) * (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4.
%F For large n, a(n) is asymptotically (3-sqrt(3))/3* 2^(3*n)/sqrt(Pi*n^3), corrected by _Vaclav Kotesovec_, May 31 2014. (End)
%F O.g.f. satisfies A(x^2) = 1/x * Series_Reversion( x*(1 - x^2)/(1 + x^4) ). - _Peter Bala_, Aug 02 2016
%F D-finite with recurrence n*(n+1)*(2*n+1)*a(n) -n*(28*n^2-27*n+8)*a(n-1) +6*(11*n^3-36*n^2+32*n-5)*a(n-2) +8*(2*n-5)*(14*n^2-52*n+51)*a(n-3) +32*(2*n-5)*(2*n-7)*(n-3)*a(n-4)=0. - _R. J. Mathar_, Nov 22 2024
%e G.f.: A(x) = 1 + x + 4*x^2 + 19*x^3 + 104*x^4 + 614*x^5 + 3816*x^6 + ...
%p A(x):= 1/x * (-1-sqrt(1-8*x)+sqrt(2+2*sqrt(1-8*x)+8*x))/4 ;
%p a:= n-> coeff(series(A(x), x, n+2), x, n):
%p seq(a(n), n=0..20); # _Volkan Yildiz_, Jul 01 2011
%t CoefficientList[Series[1/x * (-1-Sqrt[1-8*x]+Sqrt[2+2*Sqrt[1-8*x]+8*x])/4, {x, 0, 20}], x] (* _Vaclav Kotesovec_, May 31 2014 *)
%t a[n_] := Sum[Binomial[k, n-k]*Binomial[n+2*k, n+k]/(n+k+1), {k, 1, n}]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Apr 02 2015, after _Vladimir Kruchinin_ *)
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+x*A^3+x^2*(A+x*O(x^n))^4);polcoeff(A,n)}
%o for(n=0,25,print1(a(n),", "))
%o (PARI) {a(n)=polcoeff((1/x)*serreverse(x*(1+sqrt(1-4*x-4*x^2 +x^2*O(x^n)))/2),n)}
%o for(n=0,25,print1(a(n),", "))
%o (Maxima) a(n):=sum((binomial(k,n-k)*binomial(n+2*k,n+k))/(n+k+1),k,1,n); /* _Vladimir Kruchinin_, May 12 2011 */
%o (PARI) x='x+O('x^66); /* that many terms */
%o Vec(1/x*serreverse((x*(1+sqrt(1-4*x-4*x^2))/2))) /* show terms */ /* _Joerg Arndt_, May 13 2011 */
%Y Cf. A000108.
%K nonn,easy
%O 0,3
%A _Paul D. Hanna_, Mar 01 2011