login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062265
Row sums of signed triangle A062140 (generalized a=4 Laguerre).
2
1, 4, 19, 104, 641, 4364, 32251, 254176, 2091841, 17435924, 138844931, 891248984, 263059969, -163754125796, -4970760027029, -117798281164336, -2588474951884159, -55489648295242204, -1184521077396558989, -25406942370946446776, -549455868757454486399, -11980725887273702949076
OFFSET
0,2
FORMULA
E.g.f.: exp(-x/(1-x))/(1-x)^5.
a(n) = n! * Sum_{m=0..n} (-1)^m * binomial(n+4, n-m)/m!.
a(n) = 2*(n+1)*a(n-1) - (n-1)*(n+3)*a(n-2). - Vaclav Kotesovec, Aug 01 2013
MATHEMATICA
Table[n!*LaguerreL[n, 4, 1], {n, 0, 20}] (* Vaclav Kotesovec, Aug 01 2013 *)
PROG
(PARI) for(n=0, 30, print1(n!*sum(k=0, n, (-1)^k*binomial(n+4, n-k)/k!), ", ")) \\ G. C. Greubel, May 13 2018
(PARI) a(n) = vecsum(Vec(n!*pollaguerre(n, 4))); \\ Michel Marcus, Feb 06 2021
(Magma) [Factorial(n)*(&+[(-1)^k*Binomial(n+4, n-k)/Factorial(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, May 13 2018
CROSSREFS
Cf. A062140.
Sequence in context: A292098 A186997 A367239 * A088129 A369109 A082030
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Jun 19 2001
STATUS
approved