|
|
A062266
|
|
Row sums of unsigned triangle A062140 (generalized a=4 Laguerre).
|
|
5
|
|
|
1, 6, 43, 358, 3393, 36046, 424051, 5470158, 76751233, 1163391958, 18941512731, 329604456886, 6103575192193, 119823200043678, 2485452283923043, 54309931242376606, 1246803623807490561, 29999359707124127398, 754865494585690965643, 19824604328577866107398
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
E.g.f.: exp(x/(1-x))/(1-x)^5.
a(n) = Sum_{m=0..n} n!*binomial(n+4, n-m)/m!.
|
|
MAPLE
|
A062266:= n -> n!*simplify(LaguerreL(n, 4, -1), 'LaguerreL');
|
|
MATHEMATICA
|
Table[n!*SeriesCoefficient[E^(x/(1-x))/(1-x)^5, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 11 2012 *)
|
|
PROG
|
(PARI) my(x='x+O('x^66)); Vec(serlaplace(exp(x/(1-x))/(1-x)^5)) \\ Joerg Arndt, May 06 2013
(PARI) a(n) = vecsum(apply(abs, Vec(n!*pollaguerre(n, 4)))); \\ Michel Marcus, Feb 06 2021
(Magma) [(&+[Factorial(n)*Binomial(n+4, n-m)/Factorial(m): m in [0..n]]): n in [0..20]]; // G. C. Greubel, Feb 06 2018
(Sage) [factorial(n)*gen_laguerre(n, 4, -1) for n in (0..30)] # G. C. Greubel, Mar 10 2021
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|