OFFSET
1,1
COMMENTS
Condition on odd prime p so that Q(Cp^2) is not rational over Q.
Let p>7 is an odd prime which does not satisfy any of the following conditions:
(i) p = 2*3^s + 1, s >=0 where s !== -1 modulo 4.
(ii) p = 2*11^(2s+1) + 1, s>=0.
(iii) p = 2*q^(2s+1) + 1, s>=1 where q is an odd prime such that q == -1 modulo mod 12, q >= 23.
LINKS
Shizuo Endo and Takehiko Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan, Volume 25, Number 1 (1973), 1-167 (see Proposition 3.7 p.19).
PROG
(PARI) iscondi(p) = (r = (p-1)/2) && (k = ispower(r, , &n)) && (n == 3) && (k >= 2) && ((k % 4) != 3);
iscondii(p) = (r = (p-1)/2) && ((r == 11) || ((k = ispower(r, , &n)) && (n == 11) && (k % 2)));
iscondiii(p) = (r = (p-1)/2) && (k = ispower(r, , &n)) && isprime(n) && (n >= 23) && ((n % 12) == 11) && (k >= 3) && (k % 2);
isok(p) = isprime(p) && (iscondi(p) || iscondii(p) || iscondiii(p));
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Apr 08 2014
STATUS
approved