login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121395
Triangle T, read by rows, where column k equals column k of T^(2^k) shift down 1 row, with T(n,n)=T(n+1,n)=1 for n>=0.
3
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 4, 1, 1, 1, 16, 22, 8, 1, 1, 1, 75, 164, 92, 16, 1, 1, 1, 594, 1837, 1464, 376, 32, 1, 1, 1, 8420, 34176, 35190, 12336, 1520, 64, 1, 1, 1, 212790, 1106012, 1393400, 612316, 101216, 6112, 128, 1, 1, 1, 9542280, 63053480, 95005100
OFFSET
0,8
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 5, 4, 1, 1;
1, 16, 22, 8, 1, 1;
1, 75, 164, 92, 16, 1, 1;
1, 594, 1837, 1464, 376, 32, 1, 1;
1, 8420, 34176, 35190, 12336, 1520, 64, 1, 1;
1, 212790, 1106012, 1393400, 612316, 101216, 6112, 128, 1, 1; ...
where column 0 of T^(2^0) equals column 0 of T.
The matrix square T^2 begins:
1;
2, 1;
3, 2, 1;
5, 5, 2, 1;
12, 16, 9, 2, 1;
49, 75, 56, 17, 2, 1;
350, 594, 506, 208, 33, 2, 1; ...
where column 1 of T^(2^1) equals column 1 of T.
The matrix 4th power T^4 begins:
1;
4, 1;
10, 4, 1;
26, 14, 4, 1;
93, 60, 22, 4, 1;
525, 379, 164, 38, 4, 1;
4940, 3918, 1837, 516, 70, 4, 1; ...
where column 2 of T^(2^2) equals column 2 of T.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(2^(j-1)))[i-1, j]); )); A=B); return(A[n+1, k+1])}
CROSSREFS
Cf. A121396 (column 1), A121397 (column 2).
Sequence in context: A181196 A227578 A181783 * A275377 A219585 A292464
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 27 2006
STATUS
approved