This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236770 a(n) = n*(n + 1)*(3*n^2 + 3*n - 2)/8. 11

%I

%S 0,1,12,51,145,330,651,1162,1926,3015,4510,6501,9087,12376,16485,

%T 21540,27676,35037,43776,54055,66045,79926,95887,114126,134850,158275,

%U 184626,214137,247051,283620,324105,368776,417912,471801,530740,595035,665001,740962

%N a(n) = n*(n + 1)*(3*n^2 + 3*n - 2)/8.

%C After 0, first trisection of A011779 and right border of A177708.

%H Bruno Berselli, <a href="/A236770/b236770.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F G.f.: x*(1 + 7*x + x^2)/(1 - x)^5.

%F a(n) = a(-n-1) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).

%F a(n) = A000326(A000217(n)).

%F a(n) = A000217(n) + 9*A000332(n+2).

%F Sum_{n>=1} 1/a(n) = 2 + 4*sqrt(3/11)*Pi*tan(sqrt(11/3)*Pi/2) = 1.11700627139319... . - _Vaclav Kotesovec_, Apr 27 2016

%t Table[n (n + 1) (3 n^2 + 3 n - 2)/8, {n, 0, 40}]

%t LinearRecurrence[{5,-10,10,-5,1},{0,1,12,51,145},40] (* _Harvey P. Dale_, Aug 22 2016 *)

%o (PARI) for(n=0, 40, print1(n*(n+1)*(3*n^2+3*n-2)/8", "));

%o (MAGMA) [n*(n+1)*(3*n^2+3*n-2)/8: n in [0..40]];

%Y Partial sums of A004188.

%Y Cf. A000217, A000332, A011779, A177708.

%Y Cf. similar sequences on the polygonal numbers: A002817(n) = A000217(A000217(n)); A000537(n) = A000290(A000217(n)); A037270(n) = A000217(A000290(n)); A062392(n) = A000384(A000217(n)).

%Y Cf. sequences of the form A000217(m)+k*A000332(m+2): A062392 (k=12); A264854 (k=11); A264853 (k=10); this sequence (k=9); A006324 (k=8); A006323 (k=7); A000537 (k=6); A006322 (k=5); A006325 (k=4), A002817 (k=3), A006007 (k=2), A006522 (k=1).

%Y Cf. A232713, A260810.

%K nonn,easy

%O 0,3

%A _Bruno Berselli_, Jan 31 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 17:17 EST 2019. Contains 329970 sequences. (Running on oeis4.)