login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037268
Sum of reciprocals of digits = 1.
9
1, 22, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284, 8428, 8482, 8824
OFFSET
1,2
COMMENTS
This sequence has 1209 terms.
Intersection of A037264 and A034708: A214949(a(n))*A214950(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..1209 (full sequence)
MAPLE
A037268 := proc(n) option remember: local d, k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k, base, 10): if(not member(0, d) and add(1/d[j], j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n), n=1..50); # Nathaniel Johnston, May 28 2011
PROG
(Haskell)
a037268 n = a037268_list !! (n-1)
a037268_list = filter ((== 1) . a168046) $
takeWhile (<= 999999999) a214959_list
-- Reinhard Zumkeller, Aug 02 2012
(PARI) lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")); ); } \\ Michel Marcus, Jul 06 2015
(Python)
from fractions import Fraction
def ok(n):
sn = str(n)
return False if '0' in sn else sum(Fraction(1, int(d)) for d in sn) == 1
def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
print(aupto(8824)) # Michael S. Branicky, Jan 22 2021
CROSSREFS
Subsequence of A214959.
Sequence in context: A022617 A082205 A003205 * A091783 A213072 A159649
KEYWORD
easy,nonn,base,fini,full
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Jun 15 1998
Two missing terms inserted by Nathaniel Johnston, May 28 2011
STATUS
approved