login
A037268
Sum of reciprocals of digits = 1.
9
1, 22, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 2488, 2666, 2848, 2884, 3366, 3446, 3464, 3636, 3644, 3663, 4288, 4346, 4364, 4436, 4444, 4463, 4634, 4643, 4828, 4882, 6266, 6336, 6344, 6363, 6434, 6443, 6626, 6633, 6662, 8248, 8284, 8428, 8482, 8824
OFFSET
1,2
COMMENTS
This sequence has 1209 terms.
Intersection of A037264 and A034708: A214949(a(n))*A214950(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 1..1209 (full sequence)
MAPLE
A037268 := proc(n) option remember: local d, k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do d:=convert(k, base, 10): if(not member(0, d) and add(1/d[j], j=1..nops(d))=1)then return k: fi: od: end: seq(A037268(n), n=1..50); # Nathaniel Johnston, May 28 2011
PROG
(Haskell)
a037268 n = a037268_list !! (n-1)
a037268_list = filter ((== 1) . a168046) $
takeWhile (<= 999999999) a214959_list
-- Reinhard Zumkeller, Aug 02 2012
(PARI) lista(nn) = {for (n=1, nn, d = digits(n); if (vecmin(d) && (sum(k=1, #d, 1/d[k])==1), print1(n, ", ")); ); } \\ Michel Marcus, Jul 06 2015
(Python)
from fractions import Fraction
def ok(n):
sn = str(n)
return False if '0' in sn else sum(Fraction(1, int(d)) for d in sn) == 1
def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
print(aupto(8824)) # Michael S. Branicky, Jan 22 2021
CROSSREFS
Subsequence of A214959.
Sequence in context: A022617 A082205 A003205 * A091783 A213072 A159649
KEYWORD
easy,nonn,base,fini,full
AUTHOR
EXTENSIONS
More terms from Christian G. Bower, Jun 15 1998
Two missing terms inserted by Nathaniel Johnston, May 28 2011
STATUS
approved