login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214959
Numbers for which the sum of reciprocals of nonzero digits = 1.
5
1, 10, 22, 100, 202, 220, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 1000, 2002, 2020, 2036, 2044, 2063, 2200, 2306, 2360, 2404, 2440, 2488, 2603, 2630, 2666, 2848, 2884, 3026, 3033, 3062, 3206, 3260, 3303, 3330, 3366, 3446, 3464, 3602, 3620, 3636
OFFSET
1,2
COMMENTS
Intersection of A214957 and A214958: A214949(a(n))*A214950(a(n)) = 1.
LINKS
MATHEMATICA
idnQ[n_]:=Total[1/Select[IntegerDigits[n], #>0&]]==1; Select[Range[ 4000], idnQ] (* Harvey P. Dale, Dec 08 2012 *)
PROG
(Haskell)
import Data.Ratio ((%), numerator, denominator)
a214959 n = a214959_list !! (n-1)
a214959_list = [x | x <- [0..], f x 0] where
f 0 v = numerator v == 1 && denominator v == 1
f u v | d > 0 = f u' (v + 1 % d)
| otherwise = f u' v where (u', d) = divMod u 10
(Magma) SumReciprocalsDigits:=func<n | &+[1/d: d in Intseq(n) | not IsZero(d)]>; [n: n in [1..3636] | IsOne(SumReciprocalsDigits(n))]; // Bruno Berselli, Aug 02 2012
CROSSREFS
Cf. A037268 (subsequence).
Sequence in context: A354879 A349847 A333104 * A054095 A125618 A341261
KEYWORD
nonn,base
AUTHOR
Reinhard Zumkeller, Aug 02 2012
STATUS
approved