Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:46:02
%S 1,10,22,100,202,220,236,244,263,326,333,362,424,442,623,632,1000,
%T 2002,2020,2036,2044,2063,2200,2306,2360,2404,2440,2488,2603,2630,
%U 2666,2848,2884,3026,3033,3062,3206,3260,3303,3330,3366,3446,3464,3602,3620,3636
%N Numbers for which the sum of reciprocals of nonzero digits = 1.
%C Intersection of A214957 and A214958: A214949(a(n))*A214950(a(n)) = 1.
%H Reinhard Zumkeller, <a href="/A214959/b214959.txt">Table of n, a(n) for n = 1..10000</a>
%t idnQ[n_]:=Total[1/Select[IntegerDigits[n],#>0&]]==1; Select[Range[ 4000],idnQ] (* _Harvey P. Dale_, Dec 08 2012 *)
%o (Haskell)
%o import Data.Ratio ((%), numerator, denominator)
%o a214959 n = a214959_list !! (n-1)
%o a214959_list = [x | x <- [0..], f x 0] where
%o f 0 v = numerator v == 1 && denominator v == 1
%o f u v | d > 0 = f u' (v + 1 % d)
%o | otherwise = f u' v where (u',d) = divMod u 10
%o (Magma) SumReciprocalsDigits:=func<n | &+[1/d: d in Intseq(n) | not IsZero(d)]>; [n: n in [1..3636] | IsOne(SumReciprocalsDigits(n))]; // _Bruno Berselli_, Aug 02 2012
%Y Cf. A037268 (subsequence).
%K nonn,base
%O 1,2
%A _Reinhard Zumkeller_, Aug 02 2012