login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317617
Triangle T read by rows: T(n, k) = (n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2).
7
1, 5, 5, 14, 15, 16, 34, 34, 34, 34, 63, 64, 65, 66, 67, 111, 111, 111, 111, 111, 111, 172, 173, 174, 175, 176, 177, 178, 260, 260, 260, 260, 260, 260, 260, 260, 365, 366, 367, 368, 369, 370, 371, 372, 373, 505, 505, 505, 505, 505, 505, 505, 505, 505, 505, 666
OFFSET
1,2
COMMENTS
T(n, k) is the sum of the terms of the k-th column of an n X n square matrix M formed by writing the numbers 1, ..., n^2 successively forward and backward along the rows in zig-zag pattern (proved). The n X n square matrix M is defined as M[i, j, n] = j + n*(i - 1) if i is odd and M[i, j, n] = n*i - j + 1 if i is even (see the examples below).
The rows of even indices of the triangle T are made of all the same repeating number.
FORMULA
T(n, k) = A006003(n) + (k - (A000027(n) + 1)/2)*A000035(n).
G.f.: x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(- 3 + y) - 3*x^2*(- 1 + y) + y)/((-1 + x)^4*(1 + x)^2*(-1 + y)^2).
E.g.f.: (1/4)*exp(-x + y)*(1 - x - 2*y + exp(2*x)*(-1 + 3*x + 6*x^2 + 2*x^3 + 2*y)). - Stefano Spezia, Jan 10 2019
EXAMPLE
n\k| 1 2 3 4 5 6
---+------------------------
1 | 1
2 | 5 5
3 | 14 15 16
4 | 34 34 34 34
5 | 63 64 65 66 67
6 | 111 111 111 111 111 111
...
For n = 1 the matrix M is
1
with column sum 1.
For n = 2 the matrix M is
1, 2
4, 3
with column sums 5, 5.
For n = 3 the matrix M is
1, 2, 3
6, 5, 4
7, 8, 9
with column sums 14, 15, 16.
MAPLE
a:=(n, k)->(n^3+n)/2+(k-(n+1)/2)*modp(n, 2): seq(seq(a(n, k), k=1..n), n=1..11); # Muniru A Asiru, Aug 24 2018
MATHEMATICA
f[n_] := Table[SeriesCoefficient[(x*(x*(5 - 7*y) + x^4*(1 - 2*y) - x^3*(-3 + y) - 3*x^2*(-1 + y) + y))/((-1 + x)^4*(1 + x)^2*(-1 + y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]]
T[i_, j_, n_] := If[OddQ@ i, j + n*(i - 1), n*i - j + 1]; f[n_] := Plus @@@ Transpose[ Table[T[i, j, n], {i, n}, {j, n}]]; Array[f, 11] // Flatten (* Robert G. Wilson v, Aug 01 2018 *)
f[n_] := Table[SeriesCoefficient[1/4 E^(-x + y) (1 - x - 2 y + E^(2 x) (-1 + 3 x + 6 x^2 + 2 x^3 + 2 y)), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 1, n}]; Flatten[Array[f, 11]] (* Stefano Spezia, Jan 10 2019 *)
PROG
(R) # by formula
for (n in 1:11){
t <- c(n, "")
for(j in 1:n){
t <- c(t, (n^3+n)/2+(j-(n+1)/2)*(n%%2), "")
}
cat(t, "\n")
} # yields sequence in triangular form
(MATLAB and FreeMat)
for(i=1:11);
for(j=1:i);
t=(i^3 + i)/2 + (j - (i + 1)/2)*mod(i, 2);
fprintf('%0.f\t', t);
end
fprintf('\n');
end % yields sequence in triangular form
(GAP)
A317617 := function(n)
local i, j, t;
for i in [1 .. n] do
for j in [1 .. i] do
t := (i^3 + i)/2 + (j - (i + 1)/2)*(i mod 2);
Print(t, "\t");
od;
Print("\n");
od;
end;
A317617(11); # yields sequence in triangular form
(Maxima) sjoin(v, j) := apply(sconcat, rest(join(makelist(j, length(v)), v)))$ display_triangle(n) := for i from 1 thru n do disp(sjoin(makelist((i^3+i)/2+(j-(i+1)/2)*mod(i, 2), j, 1, i), " ")); display_triangle(10);
(Magma) [[(n^3 + n)/2 + (k - (n + 1)/2)*(n mod 2): k in [1..n]]: n in [1..11]];
(PARI) M(i, j, n) = if (i % 2, j + n*(i-1), n*i - j + 1);
T(n, k) = sum(i=1, n, M(i, k, n));
tabl(nn) = for(n=1, nn, for(k=1, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Aug 09 2018
(GAP) Flat(List([1..11], n->List([1..n], k->(n^3+n)/2+(k-(n+1)/2)*(n mod 2)))); # Muniru A Asiru, Aug 24 2018
CROSSREFS
Cf. A006003, A000027, A000035, A037270 (row sums).
A317614(n): the trace of the n X n square matrix M.
A074147(n): the elements of the antidiagonal of the n X n square matrix M.
A241016(n): the triangle of the row sums of the n X n square matrix M.
A246697(n): the right diagonal of the triangle T.
Sequence in context: A286257 A168418 A266440 * A294750 A304300 A321653
KEYWORD
nonn,tabl
AUTHOR
Stefano Spezia, Aug 01 2018
STATUS
approved