login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317619
Squares visited by a (2,4)-leaper on a spirally numbered board and moving to the lowest available unvisited square at each step.
3
0, 50, 12, 18, 24, 14, 20, 10, 16, 22, 52, 58, 128, 134, 60, 54, 124, 78, 160, 70, 76, 158, 152, 66, 140, 146, 68, 62, 136, 130, 232, 122, 164, 74, 156, 266, 72, 150, 64, 138, 56, 126, 80, 162, 276, 154, 264, 406, 144, 250, 388, 242, 236, 370, 228, 166
OFFSET
0,2
COMMENTS
Board is numbered with the square spiral:
.
16--15--14--13--12
| |
17 4---3---2 11 .
| | | |
18 5 0---1 10 .
| | |
19 6---7---8---9 .
|
20--21--22--23--24--25
.
The sequence is finite: at step 2015, square 8398 is visited, after which there are no unvisited squares within one move.
FORMULA
a(n) = A317620(n+1) - 1.
MATHEMATICA
spiral[n_] := Block[{o = 2 n - 1, t, w}, t = Table[0, {o}, {o}]; t = ReplacePart[t, {n, n} -> 1]; Do[w = Partition[Range[(2 (# - 1) - 1)^2 + 1, (2 # - 1)^2], 2 (# - 1)] &@ k; Do[t = ReplacePart[t, {(n + k) - (j + 1), n + (k - 1)} -> #[[1, j]]]; t = ReplacePart[t, {n - (k - 1), (n + k) - (j + 1)} -> #[[2, j]]]; t = ReplacePart[t, {(n - k) + (j + 1), n - (k - 1)} -> #[[3, j]]]; t = ReplacePart[t, {n + (k - 1), (n - k) + (j + 1)} -> #[[4, j]]], {j, 2 (k - 1)}] &@ w, {k, 2, n}]; t]; Block[{nn = 30, j = {2, 4}, k = 0, t}, t = spiral[nn]; (k - 1) + Nest[Function[{a}, Append[a, SelectFirst[Sort@ Map[{t[[##]], ##} & @@ {#1 + a[[-1, 2]], #2 + a[[-1, 3]]} & @@ # &, Join @@ Inner[Times, Tuples[{-1, 1}, {2}], Permutations[j], List]], FreeQ[a[[All, 1]], First[#] ] &]]], {{1, nn, nn}}, 55][[All, 1]] ] (* Michael De Vlieger, Aug 02 2018 *)
CROSSREFS
Sequence in context: A187526 A187697 A048178 * A330848 A072460 A248128
KEYWORD
nonn,fini,full
AUTHOR
Daniël Karssen, Aug 01 2018
STATUS
approved