login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266440
Total number of OFF (white) cells after n iterations of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
1
0, 0, 5, 5, 14, 14, 27, 27, 44, 44, 65, 65, 90, 90, 119, 119, 152, 152, 189, 189, 230, 230, 275, 275, 324, 324, 377, 377, 434, 434, 495, 495, 560, 560, 629, 629, 702, 702, 779, 779, 860, 860, 945, 945, 1034, 1034, 1127, 1127, 1224, 1224, 1325, 1325, 1430
OFFSET
0,3
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = (n^2+((-1)^n+2)*n+(-1)^n-1)/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
G.f.: x^2*(5-x^2) / ((1-x)^3*(1+x)^2).
(End)
MATHEMATICA
rule=23; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) nwc=Table[Length[catri[[k]]]-nbc[[k]], {k, 1, rows}]; (* Number of White cells in stage n *) Table[Total[Take[nwc, k]], {k, 1, rows}] (* Number of White cells through stage n *)
CROSSREFS
Cf. A266434.
Sequence in context: A062367 A286257 A168418 * A317617 A294750 A304300
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 29 2015
STATUS
approved