login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266437
Number of ON (black) cells in the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 0, 7, 0, 11, 0, 15, 0, 19, 0, 23, 0, 27, 0, 31, 0, 35, 0, 39, 0, 43, 0, 47, 0, 51, 0, 55, 0, 59, 0, 63, 0, 67, 0, 71, 0, 75, 0, 79, 0, 83, 0, 87, 0, 91, 0, 95, 0, 99, 0, 103, 0, 107, 0, 111, 0, 115, 0, 119, 0, 123, 0, 127, 0, 131, 0, 135, 0, 139, 0
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Empirical g.f.: (1 + 3*x - 2*x^2 + x^3 + x^4)/(-1 + x^2)^2. - Michael De Vlieger, Dec 29 2015
Conjectures from Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = (1-(-1)^n)*(2*n+1)/2 for n>0.
a(n) = 2*a(n-2)-a(n-4) for n>4.
(End)
a(n) = A266220(n), n>1. - R. J. Mathar, Jan 10 2016
MATHEMATICA
rule=23; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]], {k, 1, rows}] (* Number of Black cells in stage n *)
CROSSREFS
Cf. A266434.
Sequence in context: A337767 A249904 A324875 * A377462 A077896 A359061
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 29 2015
STATUS
approved