login
A266437
Number of ON (black) cells in the n-th iteration of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 0, 7, 0, 11, 0, 15, 0, 19, 0, 23, 0, 27, 0, 31, 0, 35, 0, 39, 0, 43, 0, 47, 0, 51, 0, 55, 0, 59, 0, 63, 0, 67, 0, 71, 0, 75, 0, 79, 0, 83, 0, 87, 0, 91, 0, 95, 0, 99, 0, 103, 0, 107, 0, 111, 0, 115, 0, 119, 0, 123, 0, 127, 0, 131, 0, 135, 0, 139, 0
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Empirical g.f.: (1 + 3*x - 2*x^2 + x^3 + x^4)/(-1 + x^2)^2. - Michael De Vlieger, Dec 29 2015
Conjectures from Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = (1-(-1)^n)*(2*n+1)/2 for n>0.
a(n) = 2*a(n-2)-a(n-4) for n>4.
(End)
a(n) = A266220(n), n>1. - R. J. Mathar, Jan 10 2016
MATHEMATICA
rule=23; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]], {k, 1, rows}] (* Number of Black cells in stage n *)
CROSSREFS
Cf. A266434.
Sequence in context: A337767 A249904 A324875 * A377462 A077896 A359061
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 29 2015
STATUS
approved