

A266220


Number of ON (black) cells in the nth iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.


2



1, 2, 0, 7, 0, 11, 0, 15, 0, 19, 0, 23, 0, 27, 0, 31, 0, 35, 0, 39, 0, 43, 0, 47, 0, 51, 0, 55, 0, 59, 0, 63, 0, 67, 0, 71, 0, 75, 0, 79, 0, 83, 0, 87, 0, 91, 0, 95, 0, 99, 0, 103, 0, 107, 0, 111, 0, 115, 0, 119, 0, 123, 0, 127, 0, 131, 0, 135, 0, 139, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.


LINKS



FORMULA

Conjectures from Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 1/2*(1(1)^n)*(2*n+1) for n>1.
a(n) = 2*a(n2)  a(n4) for n>5.
G.f.: (1+2*x2*x^2+3*x^3+x^4x^5) / ((1x)^2*(1+x)^2).
(End)


MATHEMATICA

rule=7; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rowsk+1, rows+k1}], {k, 1, rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]], {k, 1, rows}] (* Number of Black cells in stage n *)


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



