login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266218
Decimal representation of the n-th iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
4
1, 6, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
From Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>5.
G.f.: (1+6*x-17*x^2+25*x^3+16*x^4-16*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
a(n) = (2*4^n - 1)*(n mod 2) + 0^n - 0^abs(n-1). - Karl V. Keller, Jr., Aug 17 2021
MATHEMATICA
rule=7; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
PROG
(Python) print([(2*4**n-1)*(n%2) + 0**n - 0**abs(n-1) for n in range(33)]) # Karl V. Keller, Jr., Aug 17 2021
CROSSREFS
Sequence in context: A167028 A246137 A052679 * A240818 A134680 A362794
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 24 2015
STATUS
approved