login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal representation of the n-th iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
4

%I #21 Aug 29 2021 19:09:33

%S 1,6,0,127,0,2047,0,32767,0,524287,0,8388607,0,134217727,0,2147483647,

%T 0,34359738367,0,549755813887,0,8796093022207,0,140737488355327,0,

%U 2251799813685247,0,36028797018963967,0,576460752303423487,0,9223372036854775807,0

%N Decimal representation of the n-th iteration of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A266218/b266218.txt">Table of n, a(n) for n = 0..499</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,17,0,-16).

%F From _Colin Barker_, Dec 25 2015 and Apr 13 2019: (Start)

%F a(n) = 17*a(n-2) - 16*a(n-4) for n>5.

%F G.f.: (1+6*x-17*x^2+25*x^3+16*x^4-16*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).

%F (End)

%F a(n) = (2*4^n - 1)*(n mod 2) + 0^n - 0^abs(n-1). - _Karl V. Keller, Jr._, Aug 17 2021

%t rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)

%o (Python) print([(2*4**n-1)*(n%2) + 0**n - 0**abs(n-1) for n in range(33)]) # _Karl V. Keller, Jr._, Aug 17 2021

%Y Cf. A266216, A266217.

%K nonn,easy

%O 0,2

%A _Robert Price_, Dec 24 2015