login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266221
Total number of ON (black) cells after n iterations of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 3, 10, 10, 21, 21, 36, 36, 55, 55, 78, 78, 105, 105, 136, 136, 171, 171, 210, 210, 253, 253, 300, 300, 351, 351, 406, 406, 465, 465, 528, 528, 595, 595, 666, 666, 741, 741, 820, 820, 903, 903, 990, 990, 1081, 1081, 1176, 1176, 1275, 1275, 1378, 1378
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Dec 25 2015 and Apr 13 2019: (Start)
a(n) = 1/2*(n+1)*(n-(-1)^n+1).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.
G.f.: (1+2*x-2*x^2+3*x^3+x^4-x^5) / ((1-x)^3*(1+x)^2).
(End)
a(n) = A000217(A052928(n+1)) for n>0. - Michel Marcus, Sep 25 2016
MATHEMATICA
rule=7; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A266216.
Sequence in context: A330632 A278832 A168376 * A073709 A085288 A124630
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 24 2015
EXTENSIONS
Conjectures from Colin Barker, Apr 13 2019
STATUS
approved