login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of ON (black) cells after n iterations of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.
1

%I #18 Apr 13 2019 22:10:28

%S 1,3,3,10,10,21,21,36,36,55,55,78,78,105,105,136,136,171,171,210,210,

%T 253,253,300,300,351,351,406,406,465,465,528,528,595,595,666,666,741,

%U 741,820,820,903,903,990,990,1081,1081,1176,1176,1275,1275,1378,1378

%N Total number of ON (black) cells after n iterations of the "Rule 7" elementary cellular automaton starting with a single ON (black) cell.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

%H Robert Price, <a href="/A266221/b266221.txt">Table of n, a(n) for n = 0..499</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, Dec 25 2015 and Apr 13 2019: (Start)

%F a(n) = 1/2*(n+1)*(n-(-1)^n+1).

%F a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5.

%F G.f.: (1+2*x-2*x^2+3*x^3+x^4-x^5) / ((1-x)^3*(1+x)^2).

%F (End)

%F a(n) = A000217(A052928(n+1)) for n>0. - _Michel Marcus_, Sep 25 2016

%t rule=7; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]],{k,1,rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc,k]],{k,1,rows}] (* Number of Black cells through stage n *)

%Y Cf. A266216.

%K nonn,easy

%O 0,2

%A _Robert Price_, Dec 24 2015

%E Conjectures from _Colin Barker_, Apr 13 2019