login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266438
Total number of ON (black) cells after n iterations of the "Rule 23" elementary cellular automaton starting with a single ON (black) cell.
1
1, 4, 4, 11, 11, 22, 22, 37, 37, 56, 56, 79, 79, 106, 106, 137, 137, 172, 172, 211, 211, 254, 254, 301, 301, 352, 352, 407, 407, 466, 466, 529, 529, 596, 596, 667, 667, 742, 742, 821, 821, 904, 904, 991, 991, 1082, 1082, 1177, 1177, 1276, 1276, 1379, 1379
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectured g.f.: (-(1 + x)^(-2) + (-3 + 3*x - 2*x^2)/(-1 + x)^3)/2. - Michael De Vlieger, Dec 29 2015
Conjectures from Colin Barker, Dec 30 2015 and Apr 15 2019: (Start)
a(n) = (n^2+2*n-(-1)^n*(n+1)+3)/2.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>4.
(End)
MATHEMATICA
rule=23; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) nbc=Table[Total[catri[[k]]], {k, 1, rows}]; (* Number of Black cells in stage n *) Table[Total[Take[nbc, k]], {k, 1, rows}] (* Number of Black cells through stage n *)
CROSSREFS
Cf. A266434.
Sequence in context: A107856 A212102 A168373 * A128499 A325859 A265206
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 29 2015
STATUS
approved